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Abstract

We consider the allocation of scarce societal resources, where
a central authority decides which individuals receive which
resources under capacity or budget constraints. Several algo-
rithmic fairness criteria have been proposed to guide these
procedures, each quantifying a notion of local justice to en-
sure the allocation is aligned with the principles of the local
institution making the allocation. For example, the efficient
allocation maximizes overall social welfare, whereas the lex-
imin assignment seeks to help the “neediest first.” Although
the “price of fairness” (PoF) of leximin has been studied in
prior work, we expand on these results by exploiting the struc-
ture inherent in real-world scenarios to provide tighter bounds.
We further propose a novel criterion – which we term LoINC
(leximin over individually normalized costs) – that maximizes
a different but commonly used notion of local justice: prioritiz-
ing those benefiting the most from receiving the resources. We
derive analogous PoF bounds for LoINC, showing that the
price of LoINC is typically much lower than that of leximin.
We provide extensive experimental results using both synthetic
data and in a real-world setting considering the efficacy of dif-
ferent homelessness interventions. These results show that the
empirical PoF tends to be substantially lower than worst-case
bounds would imply and allow us to characterize situations
where the price of LoINC fairness can be high.

1 Introduction
Algorithmic fairness broadly refers to the impact of auto-
mated learning or decision-making methods on different
subpopulations (statistical fairness) and/or on individuals
of different types (individual fairness) (Dwork et al. 2012;
Pleiss et al. 2017; Kearns et al. 2018). If we can measure this
impact, we can audit existing systems for fairness violations
and guarantee fairness by training learning algorithms sub-
ject to a fairness constraint. There is also a well-established
literature on algorithmic fair division and, more generally,
mechanisms for fair allocation of both divisible and indivis-
ible goods, potentially to agents with different preferences
(Bogomolnaia and Moulin 2004; Kurokawa, Procaccia, and
Shah 2015). The allocation of scarce societal resources is
related to these efforts but also has several unique features,
making it important and interesting to study separately. First,
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any notion of fairness in such domains is implicitly a no-
tion of what the political philosopher Jon Elster terms local
justice: the principles used by institutions to allocate scarce
goods or necessary burdens (Elster 1992). Examples include
the welfare-maximizing allocation or the allocation that prior-
itizes the most needy or vulnerable individuals. Operational-
izing local justice involves explicitly spelling out rules for
prioritization in the allocation of scarce resources, and those
rules of course determine outcomes for different subgroups
as well as individuals. Instead of fairness as an auditing mech-
anism or a constraint, justice becomes the primary concern
of the allocation mechanism.

Second, specific structures of these allocation problems
allow mechanisms simpler than in most problems of fair di-
vision or matching under preferences. All individuals need
the resources, but there is limited supply, and the institution
performing the allocation can be thought of as a benevolent
planner who does not need to incentivize participation and
can dictate allocations. Further, the types of resources avail-
able are typically limited in number and often well-ordered in
terms of their added value independent of the individual (e.g.,
a public school with different class sizes: it is reasonable to
assume that every student would do best in the smallest class,
next best in the medium sized one, and worst in the largest).

These features allow one to usefully model many scenar-
ios that arise in the allocation of scarce societal resources
as assignment problems, where a central authority decides
which individuals receive which resources under capacity or
budget constraints. Different algorithmic fairness criteria in
such problems operationalize different notions of local jus-
tice. The efficient, or lowest-cost allocation operationalizes
social welfare maximization, whereas the leximin mechanism
operationalizes the “neediest first” criterion. Although the
general “price of fairness” (PoF) of leximin has been studied
in prior work, here we exploit the structure inherent to many
important instantiations of societal scarce resource alloca-
tion to provide substantially tighter bounds. Instead of O(n)
where n is the number of agents, we show that the PoF can
be upper bounded by functions of both n and the number of
resource types, which are ultimately sub-linear in n.

We also propose a novel formalization of a fairness cri-
terion, LoINC (for Leximin over Individually Normalized
Costs), motivated by the local justice principle of prioritizing
those who would benefit the most from receiving the scarce



resources (Elster 1992). This is distinct from either of the
prior criteria and is commonly used in situations like medical
triage. We derive analogous PoF bounds for LoINC, show-
ing that the price of LoINC fairness is typically much lower
than the price of leximin fairness. We then turn to analyzing
the empirical price of fairness using both synthetic data and a
dataset estimating real-world efficacy of different homeless-
ness interventions. These results show that the empirical PoF
tends to be substantially lower than the worst-case bounds
would imply and also support our theoretical finding that
the price of LoINC fairness is much lower than the price
of leximin fairness. We also characterize the types of utility
distributions for which the PoF can be high. For both leximin
and LoINC, bimodal distributions, where agents can have
either very low or very high costs, tend to lead to the highest
prices of fairness, although leximin displays higher PoF for
asymmetric distributions than LoINC.

Related work. The price of fairness measure was first in-
troduced by Bertsimas, Farias, and Trichakis (2011) and Cara-
giannis et al. (2012) independently to analyze various fair
assignment objectives such as proportionality, envy-freeness,
or equitability. PoF was then studied under a wide range
of settings, including budget allocation (Naldi et al. 2016;
Nicosia, Pacifici, and Pferschy 2017), machine scheduling
(Bilò et al. 2014), and kidney exchange (Dickerson, Procac-
cia, and Sandholm 2014; McElfresh and Dickerson 2018).
Some recent work focused on PoF of allocation algorithms
when demand is uncertain (Elzayn et al. 2019; Donahue and
Kleinberg 2020). Most closely related to our result is the
work of Bei et al. (2019), who established the upper bound
for the price of leximin under indivisible goods, assuming
each agent’s maximum utility, achieved when all goods are as-
signed to them, is 1 (normalized utilities). Our work presents
the analogous bound for unit-demand leximin from the cost-
centric perspective without this assumption of normalized
utilities/costs. Typically considered a function of the number
of agents (Bertsimas, Farias, and Trichakis 2011; Caragiannis
et al. 2012; Bei et al. 2019; Suksompong 2019; Bouveret,
Chevaleyre, and Maudet 2016), PoF may also be analyzed
with respect to the number of resources k. For example, Kurz
(2016) showed that the price of envy-freeness is much lower
if k is small. Our analyses exhibit similar implications about
both leximin and LoINC.

Other lines of research focus on the asymptotic cost of
various assignment objectives when costs are drawn from a
probability distribution and the number of agents n → ∞.
Perhaps the most famous result is the limit of π2/6 of the ex-
pected minimum total cost under uniformly distributed costs,
proven by Linusson and Wästlund (2004) and Nair, Prab-
hakar, and Sharma (2005) independently. More generally,
under mild assumptions about the cost-generating distribu-
tion, Olin (1992) showed that this minimum total cost is
bounded by a constant dependent on the distribution. Results
relevant to the asymptotic cost of leximin are limited to the
expectation of the bottleneck (the minimized largest cost any
agent receives) under the assignment. Most notably, Pferschy
(1995) showed that this bottleneck asymptotically tends to
zero, and Spivey (2011) computed the asymptotic moments

of the bottleneck under various distribution families. To our
knowledge, no result on the asymptotic cost of leximin has
been established.

Fair resource allocation within the context of homeless-
ness services has been studied from various perspectives
(Fitzpatrick and Pleace 2012; Azizi et al. 2018; Kube, Das,
and Fowler 2019). Most related to our work, Kube, Das, and
Fowler (2019) formulated the assignment problem as an in-
teger program with a fairness constraint on the maximum
increase in cost an agent incurs when compared to a baseline
assignment. This maximum-increase constraint was an ad-
justable parameter of the integer program and efficiency loss
was studied as a function of this parameter.

Others have additionally studied allocation objectives that
balance efficiency and fairness. Specifically, Hooker and
Williams (2012) proposed a hybrid objective that optimizes
for leximin at the beginning of the allocation computation and
switches to efficiency when fairness becomes costly. McEl-
fresh and Dickerson (2018) applied this approach to the kid-
ney exchange setting, whereas Chen and Hooker (2020) ex-
tended it to incorporate a stronger notion of fairness. This ob-
jective requires a parameter to specify the efficiency-fairness
trade-off, but a principled choice of this parameter has not
been explored.

2 Problem statement and preliminaries
An assignment problem

〈
[n], [k], C

〉
is defined by a set of

n ∈ N agents [n] = {1, 2, ..., n}, a set of k ∈ N resources
[k] = {1, 2, ..., k}, and a matrix C = (ci,j) ∈ Rn×k denot-
ing the cost of assigning agent i to resource j. We will also
refer to the k resources as interventions. We further assume
that ci,j ∈ [0, 1], which can be made true via various nor-
malization techniques. In many contexts, we assume that ci,j
are i.i.d. samples from a probability distribution to synthet-
ically simulate cost matrices in our experiments and study
asymptotic behavior.

Assignment. We consider assignments of unit demands
(i.e., each agent is assigned to exactly one intervention). A
member A = (a1, a2, ..., an) of the set of valid assignments
M is a vector of length n, where each element ai ∈ [k]
denotes the intervention agent i is assigned to under A. We
assume that each intervention j ∈ [k] has a capacity limit
uj ∈ N, specifying the maximum number of agents that
may be assigned to it. To ensure each agent is assigned to an
intervention, we assume

∑
j∈[k] uj = n.

One of the most well-studied assignment objectives is
social welfare or efficiency, which produces the assignment
minimizing the sum of agents’ assigned costs. We call this the
efficient assignment, denoted as E. Defining C(A) as the total
cost of an assignment A, we have E = argminA∈M C(A),
which can be efficiently computed using the Kuhn-Munkres
algorithm (Kuhn 2005; Munkres 1957).

In contrast, the leximin objective minimizes individual
agents’ costs in lexicographic order: it first minimizes the
largest cost any agent incurs, then, subject to that constraint,
it minimizes the second largest cost, and so on; among others,
Bogomolnaia and Moulin (2004) and Kurokawa, Procaccia,
and Shah (2015) present the mathematical formulation of the



leximin objective. Arising from a Rawlsian notion of fairness
that prioritizes the most disadvantaged (agents with largest
costs) (Rawls 1971, 1993), leximin is a popular fair assign-
ment objective with various desiderata such as envy-freeness
up to any good and Pareto-optimality (Plaut and Roughgarden
2020). The leximin-optimal assignment is denoted as L and
can be computed in polynomial time under our unit-demand
assignment model (Sokkalingam and Aneja 1998). Efficient
computations of leximin have also been studied within other
specialized contexts such as constraint networks (Bouveret
and Lemaı̂tre 2009) or under dichotomous preferences (Bo-
gomolnaia and Moulin 2004; Kurokawa, Procaccia, and Shah
2015).

We also introduce LoINC, a modification of leximin where
the increases in cost each agent incurs, relative to their indi-
vidual lowest costs, are considered. In particular, this objec-
tive computes the leximin assignment on matrix C ′ = (c′i,j),
the normalized version of C where c′i,j = ci,j − minj ci,j
(each element subtracted by its row minimum). Intuitively,
LoINC prioritizes those who benefit most from the inter-
ventions by minimizing the largest degradation from agents’
individual best allocations. These normalized costs can be
further interpreted as individual agents’ regrets with respect
to their own best allocations, in which case LoINC lexico-
graphically minimizes these regrets. LoINC also preserves
the mentioned fairness-related characteristics of leximin but
with respect to the normalized costs, not the actual costs
themselves.

Price of fairness. A natural question to ask regarding a fair
assignment objective that might be orthogonal to efficiency
is how much additional cost is incurred. We adopt the PoF
measure from Bertsimas, Farias, and Trichakis (2011) and
Caragiannis et al. (2012) for a given fair assignment A ∈M
as the ratio between the cost of A and the minimized cost of
the efficient assignment E under a common cost matrix:

Price of fairness of A = PoF(A) =
C(A)

C(E)
.

If C(E) > 0, PoF(A) ≥ 1. If C(E) = 0 under a given
cost matrix, E assigns zero cost to all agents, and both lex-
imin and LoINC coincide with this assignment; as neither
leximin incurs any additional cost, we define PoF to be 1
in this case. So, PoF(A) ≥ 1, ∀A ∈ M under any cost ma-
trix P . In this work, we study the behavior of PoF(L) and
PoF(LoINC) within different contexts that define the cost
matrix. Intuitively, LoINC de-prioritizes agents who will
incur a high cost regardless of which intervention they are
assigned to; as we will show, this behavior typically keeps
PoF relatively lower than under leximin, while enforcing a
commonly used notion of fairness.

3 Price of fairness upper bounds
We first establish worst-case upper bounds for these two
quantities as follows:

Proposition 1. PoF(L) ≤ n; PoF(LoINC) ≤ n− 1.

We refer readers to the supplementary material for the
proof. We note that the first result is analogous to the O(n)

bound established by Bei et al. (2019) for leximin allocations
of indivisible goods with normalized utilities (where the max-
imum utility of each agent when they receive all goods equals
1). In our model where each agent is to be assigned to ex-
actly one intervention and subsequently incurs a cost, we
omit this normalization assumption but nonetheless obtain
the same PoF bound. Moreover, these bounds can be shown
to be essentially tight (see the supplementary material); for
example, Equation (∗) denotes an n×n cost matrixC∗ where
PoF(L)→ n as ε→ 0+.

C∗ =


0 0 0 · · · 0 1− ε
0 0 0 · · · 1− ε 1
0 0 0

... 1 1...
...

...
...

...
...

0 1− ε 1 · · · 1 1
1− ε 1 1 · · · 1 1

 (∗)

Under C∗, E = (n− 1, n− 2, ..., 2, 1, n) assigns agent n
a cost of 1 and the other agents costs of 0. On the other hand,
to minimize the largest cost of any agent (which is at least
1− ε), L = (n, n− 1, ..., 1) assigns all agents costs of 1− ε,
raising its total cost to n(1−ε). In this case, leximin sacrifices
agents who would otherwise enjoy zero cost to lower agent
n’s cost by ε. This is often described as the bottomless pit
problem (considerable amounts of a limited resource spent
on marginal improvements) (Veatch 1991; Brock and Wikler
2006). However, our later analyses indicate that this situation
rarely arises under mild assumptions.

4 Row-sorted cost matrices
We now turn to considering cost models that reflect reality in
the space of scarce societal resource allocation. Specifically,
we assume that within the cost matrix that defines an assign-
ment problem, elements in each row are always in the same
order. This reflects the idea that interventions can be sorted
by intensity, and everyone benefits more from more intensive
interventions. The characteristic of being roughly ordered
by effectiveness, albeit a strong assumption, is present in
resources of many applications: in the homelessness inter-
vention data, studied by Kube, Das, and Fowler (2019) and
examined in our later experiments, the four services (home-
lessness prevention, emergency shelter, rapid rehousing, and
transitional housing) provide different support levels, increas-
ing in intensity and cost, with their benefit presumably in-
creasing in the same order (although in practice there is some
heterogeneity – see discussion in Section 5); in Covid patient
care, resources such as home care, hospital beds, and ICU
beds have monotonically increasing value in helping patients
survive.

Under the assumption, we rearrange the matrix columns
in the order of increasing cost such that for every agent, the
first intervention is better (has lower cost) than the second,
which is better than the third, and so on. This arrangement,
formalized below, is assumed for the rest of this section.

ci,1 ≤ ci,2 ≤ · · · ≤ ci,k, ∀i ∈ [n].

We refer to such matrices as row-sorted, and note that if
a matrix C is row-sorted, then so is its normalized form C ′,



as normalization preserves the order of the elements in each
row. The matrices used to show the tightness of the PoF
bounds in Proposition 1 are row-sorted themselves (see the
supplementary material), so this assumption alone does not
diminish the worst-case PoF. However, it allows us to derive
more expressive bounds that will in fact have lower values in
most cases. To do this, we consider the following proposition.

Proposition 2. Under leximin (resp. LoINC), the ck agents
with the lowest costs (resp. normalized costs) in intervention
k, the last and least effective intervention, are assigned to that
intervention.

We again refer readers to the supplementary material for
the proof. The key idea is that, if one of the agents with the
lowest costs in intervention k was not assigned to the inter-
vention, there would exist a pair of agents whose assignments
violate the leximin objective.

Efficient leximin assignment. A direct corollary of Propo-
sition 2 is a more efficient method of computing the leximin
assignment on a row-sorted cost matrix. In particular, we first
assign the agents with the lowest costs in intervention k to
that intervention. Proposition 2 then applies for the remaining
agents with the lowest costs in intervention k − 1, and subse-
quently for the remaining agents in intervention k − 2, and
so on. In short, leximin is equivalent to the assignment that
greedily fills each intervention to capacity with agents having
the corresponding lowest costs, iterating from the last to the
first intervention. This procedure is described in Algorithm
1, where the returned value is the leximin assignment on a
row-sorted matrix C. To compute LoINC, the normalized
matrix C ′ is used as input.

Algorithm 1 Efficient leximin

Input: matrix C with sorted rows
Output: leximin assignment on P

1: Initialize A = (a1, a2, ..., an) as (0, 0, ..., 0).
2: for j = k, ..., 1 do
3: while uj > 0 do
4: i∗ = argmini,ai=0 ci,j
5: ai∗ ← j
6: uj ← uj − 1
7: end while
8: end for
9: return A

At each iteration j ∈ [k], the uj remaining agents with the
lowest costs in intervention j can be simultaneously found in
O(n) time in the worst case by the selection algorithm. The
entire procedure thus has an O(nk), or linear, running time
complexity. Compared with the optimized O(n2k2) running
time of a generic unit-demand leximin algorithm, established
by Sokkalingam and Aneja (1998), this algorithm enjoys a
significantly lower running time.

Remark. We assume that there are no elements of equal
value in the input cost matrix to exclude the need for tie-
breaking during the identification of agents having the low-
est costs in individual interventions. With the exception of

number instability, the event that values i.i.d. drawn from
a probability distribution without atoms are exactly equal
almost surely does not occur.

Improved price of fairness upper bounds. By selecting
the agents with the lowest costs, L (resp. LoINC) minimizes
the total cost (resp. normalized cost) incurred by agents as-
signed to intervention k. This allows us to refine the upper
bounds for the PoF of the two assignments as follows.
Proposition 3.

PoF(L) ≤ 1 +
bu
b
· n− uk

uk
;

PoF(LoINC) ≤ 1 +
bn
b
· n− uk − u1

uk
.

Here u1 and uk are the capacities of the first and last inter-
ventions, bu (resp. bn) is the largest cost (resp. normalized
cost) of any agent, minimized under L (resp. LoINC). b is
the lowest cost in intervention k. The proof for these bounds
can be found in the supplementary material. Further, if all k
interventions have equal capacity (u1 = · · · = uk = n/k),
the bounds become:

PoF(L) ≤ 1+
bu
b

(k−1); PoF(LoINC) ≤ 1+
bn
b

(k−2).

When costs are drawn from a probability distribution,
(bu/b) and (bn/b) are random variables dependent on that
distribution and n. Analyzing the induced distributions of
these variables is quite challenging, but the dependence on
the number of interventions k suggests that these new bounds
are significantly lower than the worst-case bounds when k
is relatively small, which is a natural assumption to make in
real-life scenarios. In the extreme case where k = n, the two
bounds approach the respective worst-case bounds. Moreover,
the bound for PoF(L) is at least one unit larger than that for
PoF(LoINC), as bu ≥ bn; in practice, we expect this differ-
ence to be substantially larger. In later experiments, we will
observe empirical values of these bounds under randomly
generated costs.
Remark. Substituting k = 2, we have PoF(LoINC) ≤ 1.
Since PoF(LoINC) is defined to be at least 1, this shows that
when there are only two interventions in the assignment prob-
lem, LoINC incurs no additional cost and is equivalent to the
efficient assignment E. That LoINC coincides with E when
k = 2 can in fact be proven even without the assumption of
sorted rows.
Proposition 4. PoF(LoINC) = 1 if k = 2.

The proof involves constructing a specific assignment un-
der any two-column cost matrix and showing that it optimizes
both efficiency and the LoINC objective, and is included in
the supplementary material. It is also worth noting that this
lack of additional cost when k = 2 does not hold for tradi-
tional leximin.

5 Numerical experiments
Homelessness reentry probabilities. We consider the
homelessness reentry probability dataset, introduced by Kube,



0 0.5 1

0

1

2

3

Reentry probability

D
en

si
ty

Real data
Estimated PDF

Figure 1: Homelessness reentry probability distribution

Table 1: Assignment results on the homelessness reentry probability
dataset

Criterion E L LoINC

Total cost 3682 3774 3692
PoF 1 1.025 1.003
Largest cost 0.930 0.897 0.930
Largest cost increase 0.080 0.183 0.075

Das, and Fowler (2019), which includes information about
n = 13940 households and k = 4 homelessness interven-
tions. Each value ci,j ∈ [0, 1] in the dataset denotes the
estimated probability household i will reenter the homeless-
ness services system if assigned to intervention j. Figure 1
shows the histogram distribution of these probabilities and
the probability density function (PDF) of a kernel density es-
timate (KDE) of this distribution (the supplementary material
includes more detail on the KDE). The dataset also specifies
the capacities of the four interventions. As reentry is a nega-
tive outcome, this data is directly used as the cost matrix that
defines the assignment problem, where the cost of an assign-
ment is the expected number of reentering households given
that assignment. This matrix is not row-sorted, but not all
possible orderings of intervention effectiveness are equally
likely: some orderings are not present; the most common
ordering applies to 38.0 percent of the households, while the
second most common applies to another 31.1 percent (Kube,
Das, and Fowler 2019).

Table 1 summarizes the result of the efficient and leximin
assignments with respect to various cost- and fairness-related
criteria. While having a low relative PoF, L incurs an addi-
tional cost of 92 households estimated to reenter the home-
lessness services system compared with E. In the context
of scarce resources where costs have serious implications
such as reentry into homelessness, this additional cost may
be considered inefficient. Conversely, LoINC enjoys a lower
PoF with only 10 additional households reentering the sys-
tem. In terms of fairness, L minimizes bu, the largest reentry
probability for all households, to be 89.7 percent. However,
this is arguably not a significant improvement from the same
statistic in E and LoINC, which are coincidentally both 93
percent. On the other hand, LoINC minimizes the largest
probability increase bn to be 7.5 percent, whereas it is 18.3
percent under L.

The reason bu under L is not significantly lower than that
under E or LoINC is the existence of agents whose lowest
probabilities are already high, who will inevitably incur large
costs regardless of the intervention they are assigned to. As a
result, even their minimized costs under L remain relatively
large. These agents correspond to rows in the cost matrix
with large minimum values. The large values of these low-
est costs could also cause the normalization of the matrix
to drastically change the ordering among its elements, par-
tially contributing to the difference between L and LoINC
via their inputs. The effect of these high-cost agents on the
distinction between L and LoINC is further explored in later

experiments.

Empirical price of fairness with synthetic data. We
draw i.i.d. samples from Beta distributions to generate ran-
dom cost matrices as instances of the assignment problem.
By adjusting the parameters α and β, we can simulate various
distribution shapes from which costs ci,j ∈ [0, 1] are drawn.
Samples are also drawn from the KDE of the distribution of
the homelessness reentry probabilities. This allows us to ob-
serve empirical PoF values when the costs follow the same
distribution as those in the homelessness reentry dataset, and
compare them with the results from the experiments with the
Beta distributions.

We observe the growth of PoF with respect to the number
of agents n. The top portion of Figure 2 shows the aver-
age, the 25th and 75th percentiles of empirical PoF(L) and
PoF(LoINC) as functions of n ∈ {30, 40, ..., 90, 100}. Each
subplot corresponds to the distribution from which individual
costs were drawn: U(0, 1) (or Beta(1, 1)), Beta(0.5, 0.5),
and the KDE of homelessness reentry probabilities. For each
combination of the cost distribution and n, we ran 500 ex-
periments with k = 5 interventions of equal capacity, and
recorded the resulting PoF values. As expected, these val-
ues fall significantly below the worst-case bounds. Moreover,
PoF(L) tends to be higher than PoF(LoINC), similar to the
result from the homelessness reentry dataset. It is also in-
teresting to note that all lines have a downward trend as n
increases.

We are also interested in the PoF bounds that depend on
the number of interventions k, established in Proposition 3
under the assumption of sorted rows. We repeated the experi-
ments above; this time, copies of the cost matrices were made,
sorted row-wise, and used as input to the assignment problem.
Empirical values of the two upper bounds were then recorded.
Our initial intuition was that these k-dependent bounds are
lower than the linear worst-case bounds, especially when k
is small. This is confirmed by the bottom portion of Figure
2, which shows the growth of the average, the 25th and 75th
percentiles of these values as functions of n, under the same
three cost-generating distributions.

We finally consider the effect of row-sorted cost matri-
ces on the behavior of PoF by observing PoF(L) under a
random matrix and its row-sorted version in each experi-
ment above. Figure 3 includes KDE plots of the distributions
of PoF(L) across all experiments: the left shows the distri-
bution of PoF(L) when matrices were row-sorted and that
when they were not; the right shows the distribution of the
one-to-one difference between the former and the latter in
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Figure 2: Empirical PoF (top) and improved upper bounds under row-sorted cost matrices (bottom) as functions of n.

each experiment. Intuitively, under a random matrix, there is
no intervention that universally leads to bad outcomes, and
L has more freedom to minimize the costs of its agents; un-
der a row-sorted matrix, ck agents are assigned to the least
effective intervention and incur high costs. A random matrix
thus presents less “competition” among its agents than a row-
sorted one (equivalently, more agents can be satisfied when
their preferences are more diverse, as has been established in,
for example, two-sided matching (Anshelevich, Das, and Naa-
mad 2013)), and likely yields a lower PoF(L). (However, this
is not always the case: the one-to-one difference in PoF(L) is
negative when C(E) increases by a larger portion than C(L)
under the row-sorted matrix; see the supplementary mate-
rial for more discussion.) In these experiments, PoF(LoINC)
also exhibits the same trend, albeit with lower values.

Overall, the conducted experiments offer empirical evi-
dence indicating that the prices of leximin and of LoINC
tend to be much lower than their worst-case bounds. More-
over, if not row-sorted, a cost matrix is more likely to yield a
low PoF, further suggesting that the linear worst-case bounds
are rarely achieved when costs are i.i.d. samples of a proba-
bility distribution.

Price of fairness under Beta distributed costs. We ob-
serve empirical PoF(L) and PoF(LoINC) under an exten-
sive set of cost-generating Beta distributions. Each cell of
each heat map in Figure 4 denotes the average value of
PoF(L) (left) and PoF(LoINC) (right) across 1000 experi-
ments where costs are drawn from a Beta distribution, whose
parameters are denoted in the row and column labels. In-
dividual rows in each matrix were sorted before the as-
signments were computed. We fixed n = 30, k = 5, and
uj = 6, ∀j ∈ [5]. In both cases, PoF tends to increase as α
and β grow smaller. Moreover, under any distribution, the
average price of leximin is greater than that of LoINC, and
the difference is more pronounced when β < α < 1. This
distinction relates back to high-cost agents. Specifically, Beta
distributions with β < α < 1 have more probability mass
around areas close to 1, and thus tend to generate agents
with high-valued lowest costs: an agent’s lowest cost is the

first order statistic of k samples from the generating dis-
tribution; when the distribution has more probability mass
around 1, this first order statistic tends to be large. The rows
whose smallest elements are large correspond to high-cost
agents, an indication of a large difference between PoF(L)
and PoF(LoINC).

It is interesting to note in the first heat map that for each
value of β, the average PoF(L) peaks at a certain value of α
and subsequently decreases as α increases. This situation is
quite similar to what we have observed from the effect of row-
sorted matrices: as α increases, so do both C(E) and C(L);
at first, C(L) increases faster than C(E), leading to higher
PoF, but at a certain point, the latter starts to increase faster,
thus lowering the resulting PoF. More detailed discussions
are included in the supplementary material.

Comparing the two leximin assignments. The effect of
high-cost agents is made most tangible by matrix C∗ in (∗).
Again, under C∗, L minimizes the bottleneck cost by as-
signing agent n to the most effective intervention, incurring
the cost of n(1− ε). However, the normalized cost array of
agent n is (0, ε, ε, ..., ε), whose low values de-prioritize the
agent under LoINC, which in this case coincides with E and
C(LoINC) = 1. By prioritizing agent n, a high-cost agent
whose lowest cost is as high as 1 − ε, L sacrifices its most
effective intervention and consequently raises its PoF to es-
sentially n. On the other hand, by focusing on the normalized
costs, LoINC does not exhibit this behavior. This is the core
difference between the two notions of leximin, highlighted
by the presence of these high-cost agents.

Overall, our analyses suggest that PoF(L) tends to be
higher than PoF(LoINC): the former has larger theoretical
upper bounds as well as empirical values; LoINC even maxi-
mizes efficiency under any n× 2 cost matrix (Proposition 4).
However, LoINC still enforces a meaningful fairness notion
by minimizing an agent’s cost increase with respect to their
own costs. Agents with low-valued lowest costs are priori-
tized similarly by L and LoINC. A high-cost agent, on the
other hand, is less prioritized by LoINC than by L; LoINC
recognizes the agent’s inevitably bad outcome and thus tends
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to reserve effective interventions for those that benefit more
from them. As such, LoINC is less likely to encounter the
bottomless pit problem. We argue that LoINC naturally bal-
ances between a Rawlsian fairness notion and efficiency by
not blindly prioritizing agents with inevitably bad outcomes.

Leximin under bimodal cost distributions. We noted
from Figure 4 that as α and β grow closer to 0 (i.e., when the
generating Beta distribution becomes increasingly bimodal),
empirical PoF tends to increase. We hypothesize that this
is because a matrix generated from such a distribution con-
tains costs very close to 1 (matrix C∗ in (∗) is an example
where costs are close to 1, taking on values of 1 − ε), and
leximin chooses among them the lowest-valued to assign to
its agents. This process might assign effective interventions
to agents with inevitably high costs, thus lowering the over-
all efficiency. In contrast, the efficient assignment can save
effective interventions for its other agents and enjoy a lower
cost. So, the bimodality of the cost-generating distribution
may lead to a high expected PoF.

Interestingly, if we take the Beta distribution to the limit
where α → 0+ and β → 0+ (at potentially different rates)
and consider a Bernoulli distribution for the costs, the be-
havior of PoF sharply changes. Each Bernoulli cost matrix
contains only zeros and ones; under such a matrix, E and both
leximin assignments coincide, as all three aim to minimize
the number of agents assigned to cost 1. The price of either
leximin equals 1 in this case, even without the assumption
of sorted rows. This change of behavior of PoF is due to
the fact that under a Bernoulli matrix, the ordering among

the costs (which are now simply zeros and ones) becomes
binary. The deliberation of choosing the minimum out of
the costs that are very close to 1 by leximin described above
is no longer necessary, since all large costs equal 1 and are
equivalent from the leximin perspective. A high-cost agent
in this case has a cost vector of (1, 1, ..., 1), and both leximin
assignments are indifferent among these costs.

6 Conclusion
We show that while having a linear worst-case bound, the
price of leximin fairness under unit-demand assignment prob-
lems takes on significantly lower empirical values. By assum-
ing homogeneity among the agents’ preferences, we are able
to prove a tighter bound when the number of interventions
is small. Moreover, we propose a novel objective (LoINC)
inspired by the local justice principle of prioritizing those
who would be helped most by receiving a resource, and show
that PoF(LoINC) has lower-valued upper bounds as well
as lower empirical values compared with traditional leximin.
We finally characterize settings where the two fair objectives
are costly.

Ethics statement
This work studies the cost of applying Rawlsian notions of
fairness to the allocation of scarce societal resources, and
presents an optimistic message regarding the efficiency of
the allocation. Further, we introduce a novel formal formu-
lation of an allocation objective (LoINC) that corresponds
to a different common notion of local justice and show that



under many circumstances allocations corresponding to this
objective are closer to the efficient allocation than the leximin
allocation, one operationalization of the Rawlsian notion. It
is worth noting that the LoINC allocation can suffer from the
problem of abandonment, “giving up” on individuals who
are unlikely to benefit from the allocation of resources in
a way the leximin allocation does not. The characterization
of settings where both of these fair allocations suffer from
significant efficiency loss that we establish can also prove
useful in practical situations. Perhaps the most major caution
to be aware of as research in this area begins to be taken to
practice is that, regardless of which notion of local justice is
used (which is usually determined by a social process), any
valuation-based resource allocation algorithm is subject to
the efficacy of the methods used in determining those valua-
tions. For example, measuring health-related benefits/costs in
the health care setting is generally difficult, and may involve
balancing multiple factors such as accuracy, intrusiveness,
and monetary cost (Brock and Wikler 2006).
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